eVendi Newsletter Jetzt abonnieren [Info]

Antivirus-Programm gegen die Schweinegrippe

Antivirus-Programm gegen die Schweinegrippe
Foto: © Patrick Pirker - Fotolia.com

Kennen Sie schon jemanden, der die Schweinegrippe hat oder hatte? Seit Wochen hält das H1N1-Virus die deutsche Öffentlichkeit in Atem. Es stapeln sich die Berichte über Impfmaßnahmen, jeder C-Prominente mit Schweinegrippe kann sich über fette Schlagzeilen freuen und jeder einzelne Todesfall bahnt sich seinen Weg auf die Titelseiten. Trotz der ungeheuren Medienhysterie bleiben die meisten Menschen besonnen. Mehr und mehr setzt sich die Einsicht durch, dass die neue Seuche nüchtern betrachtet weitaus weniger gefährlich ist als so manche altbekannte Krankheit. Dennoch: Grippe hat niemand gern und extrem ansteckend bleibt die Schweinegrippe auf jeden Fall. Deshalb verschreibt Ihnen eVendi.de an dieser Stelle einige Hinweise, wie Sie Infektionen vermeiden und beim Kauf der dabei hilfreichen Produkte auch noch Geld sparen können.


Ist es eine zynische Frage, ob eine Handvoll Todesopfer einen derartigen medialen Wirbel rechtfertigt? Natürlich ist jeder Todesfall beklagenswert, doch in den Medien scheint hier die Verhältnismäßigkeit verloren gegangen zu sein: Schließlich sterben nach Angaben des Robert-Koch-Instituts schon seit eh und je pro Saison zwischen 5.000 und 15.000 Menschen an Grippe – an ganz normaler Grippe wohlgemerkt, nicht etwa an SARS, Vogel- oder Schweinegrippe. Doch der riesige Medienhype hat auch ein Gutes: Jede Menge Menschen, denen das Thema Hygiene bislang völlig schnurz war, denken nun ernsthaft über ihre entsprechenden Angewohnheiten nach. Das dürfte nicht nur gegen die Verbreitung der Schweinegrippe, sondern auch gegen alle anderen Viruserkrankungen helfen – deshalb will auch eVendi.de dazu anregen.

Eine Hand wäscht die andere

Jeder kann seinen persönlichen Beitrag dazu leisten, die Grippe einzudämmen. Eine der einfachsten und wirkungsvollsten Maßnahmen, um das Ansteckungsrisiko zu verringern, ist zweifellos häufiges Händewaschen. Besonders vor dem Essen und nachdem Sie an Orten waren, wo sich viele Menschen versammeln, sollten Wasser und Seife zum Einsatz kommen. Um den Viren zuverlässig den Garaus zu machen, empfiehlt es sich, zusätzlich ein Desinfektionsmittel zu benutzen – zum Beispiel Sterillium Virugard. Die Literflasche finden Sie im Preisvergleich schon für weniger als zehn Euro. Es tötet nicht nur Viren, sondern auch Bakterien und Pilze ab und ist dabei hautverträglich und rückfettend. Besonders praktisch als Ergänzung zum normalen Händewaschen ist antiseptisches Handreinigungsgel im Spender. 500 Milliliter kosten hier knapp 20 Euro. Für die schnelle Virenbekämpfung unterwegs eignen sich Desinfektionstücher. Die Hama Desinfektionstücher in der Dose etwa finden problemlos in der Hand- oder Jackentasche Platz. Eine andere gute Möglichkeit, immer ein Desinfektionsmittel dabei zu haben, stellen Handdesinfektionssprays dar.
Für unterwegs besonders geeignet ist antibakterielles Handwaschgel. Dieses Gel ermöglicht ein Händewaschen ohne Wasser und verdunstet sofort auf der Haut.

eVendi Tipp
Sei es zu Hause, am Arbeitsplatz oder unterwegs: Beim Kampf gegen die Grippeviren geht es nicht nur um antiseptische Produkte, sondern vor allem auch um die richtigen Verhaltensweisen. So dauert eine hygienische Handwäsche mindestens 30 Sekunden und schließt auch die Handrücken, Handgelenke und Finger-Zwischenräume mit ein. Keine Uhr dabei? Dann singen Sie einfach zwei Mal hintereinander "Happy Birthday" beim Händewaschen.

Seuchenherd Computer-Tastatur
Wussten Sie, dass in einer gewöhnlichen Büro-Tastatur bis zu 400 mal mehr Krankheitsüberträger lauern als in einer öffentlichen Toilette? Wenn Sie also im Büro oft an Computern arbeiten, die auch andere Mitarbeiter regelmäßig benutzen, kann eine gründliche Reinigung der Tastatur bestimmt nicht schaden. Speziell zu diesem Zweck gibt es Reinigungssets für Keyboards, wie zum Beispiel das Tastatur-Reinigungsset Data Flash, das Sie hier im Preisvergleich schon für knapp vier Euro bekommen. Auch Telefone, die von vielen verschiedenen Menschen benutzt werden, spielen bei der Virenübertragung eine wichtige Rolle. Diese regelmäßig mit einem Desinfektionstuch abzuwischen, ist mit Sicherheit eine gute Idee.

eVendi Tipp
Ein wichtiger Punkt ist auch das richtige Husten und Niesen. Halten auch Sie dabei reflexartig die Hand vor den Mund, weil Ihre Eltern Ihnen das so eingebläut haben? Versuchen Sie, sich das wieder abzugewöhnen! Auf diese Weise hinterlassen Sie, falls Sie bereits infiziert sind, die Viren an allem, was Sie anfassen. Niesen oder husten Sie am besten in ein Papiertaschentuch oder, falls der Reiz Sie überrascht, lieber in Ihre Armbeuge als in die Hand. Damit verringern Sie das Risiko, Krankheiten zu verbreiten, erheblich.

Was tun, wenn das Virus schon im Haus ist?
Vielleicht sind ja auch schon Menschen aus Ihrem direkten Umfeld von der Schweinegrippe betroffen, denen Sie nicht aus dem Weg gehen können oder wollen. Wenn Familienmitglieder oder Mitbewohner erkrankt sind, sollten Sie körperlichen Kontakt mit ihnen so weit wie möglich vermeiden. Häufiges Lüften verringert die Virenkonzentration in der Raumluft und verhindert, dass Mund- und Nasenschleimhäute austrocknen und dadurch anfälliger werden. Auch sollten der oder die Erkrankte nicht mit anderen in einem Bett schlafen.

Darüber hinaus kann ein Mundschutz bei der Pflege eines Grippekranken eine lohnenswerte Anschaffung sein. Er schützt nicht nur seinen Träger vor einer Infektion, sondern hilft auch zu verhindern, dass dieser die Krankheit an andere Hausbewohner weitergibt. Eine Packung mit 50 dieser Schutzmasken, wie sie auch Ärzte bei Operationen benutzen, bekommen Sie im Preisvergleich ab knapp 3,50 Euro. Um die akuten Beschwerden der Erkrankten – etwa Husten, Schnupfen, Kopf- und Gliederschmerzen – zu lindern, stehen zahlreiche rezeptfreie Grippe-Medikamente zur Verfügung.

eVendi Tipp
Gehören Sie zu den Menschen, die sich zum Beispiel beim Nachdenken oft die Nase reiben oder unwillkürlich die Hand auf den Mund legen? Auch dies sind Angewohnheiten, die Sie nach Möglichkeit ablegen sollten, weil sie eine Ansteckung begünstigen. Wenn Sie Mund, Nase oder Augen berühren, können Viren von Ihren Händen über die Schleimhäute viel leichter in Ihren Körper gelangen.

Mit schwerem (Haushalts-)Gerät gegen die Grippeviren
Auf keinen Fall sollten Sie sich mit Schweinegrippe-Patienten Geschirr und Essbesteck teilen – die Ansteckung wäre praktisch garantiert. In der Regel wird aber Ihre Spülmaschine die Erreger im Normalprogramm abtöten, sodass Sie das Geschirr danach wieder allgemein verwenden können. Bettwäsche, Handtücher und Kleidung der Erkrankten sollten Sie separat bei 60 Grad in der Waschmaschine waschen. Diese Temperatur überleben die Schweinegrippe-Viren nach derzeitigem Kenntnisstand nicht. Für eine Impfung der nicht betroffenen Haushaltsbewohner ist es übrigens normalerweise zu spät, da diese etwa 7 bis 10 Tage benötigt, um einen gewissen Schutz zu entfalten.

Fazit
Angesichts der Verbreitung der Schweinegrippe in Panik zu geraten, ist sicherlich unangemessen. Wer nicht ohnehin chronisch krank ist oder ein geschwächtes Immunsystem hat, braucht sich vor ihr nicht mehr zu fürchten als vor der bekannten saisonalen Grippe, an der jedes Jahr vier bis zehn Prozent der Bevölkerung erkranken. Dennoch ist die Schweinegrippe ein guter Anlass, ganz allgemein mehr auf Hygiene zu achten. Wenn alle Menschen in diesem Zusammenhang ein wenig an sich arbeiten und sich einige schlechte Angewohnheiten abtrainieren würden, wäre schon viel erreicht.

auf Facebook teilen
Bewerten Sie diesen Artikel
Durchschnittswertung: 6.6 (7 Wertungen)


Google Anzeigen
Kommentare

Influenza: Spread by the abiotic vehicle drinking water

Influenza: probable primary spread triggered by the abiotic vehicle drinking water

 

Abstract

The triggering of human influenza epidemics by biotic droplet infection is not proven and is improbable, because epidemics rarely arise together in recognizable clusters and are caused by locally isolated virus subtypes and strains. These strains appear in a locally isolated pattern geographically, and have not been shown to arise primarily in large cities and densely populated areas, but have been found predominantly in the colder regions of Germany, reaching their peak regularly in certain districts/cities. Moreover, the appearance of these strains runs closely parallel to the course of winter cooling, and it is unlikely that they spread via saliva droplets, since saliva contains far fewer influenza virus particles than the heavier droplets from the throat and nose.

 

In temperate climates, the strict dependence on environmental temperatures makes it improbable that the primary transmission of influenza occurs through warm biotic droplet infection. Influenza transmission must be triggered by an abiotic vehicle that is increasingly efficient in spreading infection with increasingly cold environmental temperatures. Therefore, the question arises as to which abiotic vehicles are dependent on cold environmental temperatures for the transmission of influenza. Drinking water is such an abiotic vehicle. This article shows that cold drinking water may be an abiotic vehicle through which virulent human influenza viruses reach humans from infection reservoirs which is responsible predominantly for triggering seasonal influenza epidemics. This also applies specifically to the new H1N1 influenza virus with vomiting or/and diarrhoea and the lethal H5N1 avian influenza virus, whose potential transmission via water is well established.

 

 

Background

a) Droplet infection, temperature and humidity: The triggering of human influenza epidemics by biotic droplet infection is unproven1. Lowen et al. have demonstrated that influenza virus transmission in a guinea pig model is most efficient under cold and dry conditions2,3. A new study from Oregon, USA has described a correlation between humidity and influenza virus survival and transmission. When absolute humidity is low – as in the peak influenza months of January and February – the virus appears to survive longer and transmission rates increase4,5.

 

b) Cluster: Influenza epidemics in Germany rarely occur together in recognizable clusters, e.g., in only 15% of the cases during the 2006/2007 season6.

 

c) Influenza subtypes: The virus subtypes and strains involved in influenza epidemics are locally isolated. This is one indicator for why a broad homogeneous airborne “virus cloud” for the initial spread of influenza is unlikely.

 

d) Geographical allocation: The emergence of influenza epidemics shows a particular and unexpected geographical pattern. They have not been shown to arise mainly in large cities and densely populated areas. They appear predominantly in the colder regions of Germany, e.g., in the east in the winter with its cold continental climate, in the southeast, and at higher altitudes. They appear with maximum regularity in certain districts/cities.

 

e) Seasonal Influenza: An evident correlation can be observed between the parallel trends of influenza epidemics and the course of winter cooling. The influenza season starts and stops at a soil and water temperature of 7°C. Influenza incidence correlates to a much greater extent with soil and water than air temperature. Air temperature is an ad hoc indicator for frost and thaw. Soil and water temperatures are long-term indicators for the course of winter cooling. Frost inhibits the input of secreted influenza viruses in water. Frost inhibited the start of the influenza season in Germany in 2006. The differences in the extent of influenza epidemics in general can be explained by the increased use of analytical and rapid diagnostic tests, in particular since 2007, as a result of H5N1 avian influenza in Europe in the winter of 2006. In 2006 a 7-week frost inhibited the start of the influenza season until mid-February. Also, the seasonal virus secreted from infected animals may play an important role in the differing extent of influenza epidemics. In the next few years the epidemiological database will be more comprehensive as a result of further increases in the use of rapid diagnostic tests. Every year in colder Saxony, with 74% of its drinking water coming from surface water, the influenza season is much more severe than in Germany as a whole, where only 33% of the drinking water originates from surface water. Every year, as in week 11, 2007, the influenza peak in Saxony follows the thaw. Overall in Germany, there was no marked frost in 2007. The soil curves for Germany and Saxony are very similar, considerably more so than the air curves. This is why we have included the soil curve for Saxony.

 

f) Influenza transmission: The transmission routes for the common cold and influenza are still debatable. The commonly held belief is that colds are spread by particles of infected mucous generated by coughs and sneezes. Immunohistological studies have shown that foci of virus-producing cells are clustered in the mucous layer of the respiratory tract. Infected persons can shed millions of virus particles in their mucus. However, there is increasing evidence that infection also occurs via contaminated surfaces and other abiotic vehicles. This can occur when surfaces such as handkerchiefs and tissues, water taps, door handles or telephones become contaminated by droplets shed from the nose of infected individuals. The virus is passed on to another person when they touch a contaminated surface. Water is also an abiotic vehicle. It is not known which transmission routes are the most important9. From a biological point of view, influenza infection is unlikely to be spread through saliva droplets, since saliva contains far fewer influenza virus particles than the substantially heavier droplets of mucus from the throat and nasal membranes10,11. Coughs and sneezes tend to spray saliva from the pool at the front of the mouth rather than droplets of mucus from the throat and nose. Saliva contains little or no cold virus and thus aerosolized saliva is unlikely to spread infection. Colds are not caught by kissing, as cold viruses do not infect the mouth and saliva contains very little virus. When volunteers infected with the common cold kissed cold-free volunteers for up to 1.5 minutes, only one case of cross-infection occurred in 16 trials12. Infected birds secrete the influenza virus through their saliva, nasal secretions and feces. Avian influenza viruses have been isolated from unconcentrated lake water, which indicates that waterfowl have a very efficient way of transmitting viruses, i.e. via fecal material in the water supply13. Avian influenza viruses in wild aquatic birds are spread by fecal-oral transmission through the water supply14. Initial transmission of avian influenza viruses to mammals, including pigs and horses, probably also occurs by fecal contamination of water13. Shedding of the influenza virus into water leads to transmission between waterfowl, and is a major threat for epidemics in poultry and pandemics in humans15. A single human infectious dose of seasonal influenza virus might be between 100 and 1000 particles16-19. As expected, there are no data on the human infectious dose of influenza virus concerning contact with drinking water or contact between water and oral mucous membranes, conjunctiva, eardrums or wounds. The human infectious dose of H5N1 avian influenza virus is also unknown.

 

g) Human influenza viruses in mammals: Human influenza viruses have been identified in the excretions of mammals, such as pigs (fecal and oronasal), wild boar (fecal and oronasal), cattle and goats. Hence in principle, from a virological point of view the transmission path from the environment to mammals and humans is possible via water, especially drinking water13,20-30. Thus, it is highly probable that more animal species infected with influenza A will be discovered in future13. In this way, human influenza viruses are secreted into the environment and water. Secreted influenza virus titers are usually very high. Avian influenza viruses have been isolated from unconcentrated lake water, which indicates that human influenza viruses can also be isolated from untreated water.

 

 

Effectiveness of elimination and inactivation of viruses during treatment of drinking water

To determine resistance of highly pathogenic H5N1 avian influenza virus to chlorination, Rice et al.31 exposed allantoic fluid that contained two virus strains to chlorinated buffer at pH 7 and 8, at 5°C. They concluded that free chlorine concentrations typically used in drinking water treatment were sufficient to inactivate the virus by more than three orders of magnitude. However, drinking water may be colder than 5°C, e.g. 3°C. The pH value is often >8.0, e.g. 9.5. In the cold and at high pH, virus inactivation by chlorine is rather poor. Rice et al.31 used the maximum US chlorination level of 2.0 mg/L free chlorine. Only 0.1-0.3 mg/L free chlorine are allowed in Germany. The performance levels of water treatment units regarding virus inactivation32 are valid under the precondition that microorganisms in water are in suspension, not embedded in particles32. In environmental waters, secreted influenza viruses are always embedded in particles. Hence the demonstrated level of avian influenza virus inactivation in allantoic fluid diluted in buffer is not consistent with real conditions. Moreover, the WHO32 requires virus inactivation/filtration rates from six (surface water) to four (groundwater) orders of magnitude. Rice et al.31 only demonstrated three orders of magnitude. Hence the authors are not convinced that chlorinated water is safe. Real worst-case conditions are cold drinking water at 3°C, pH 9.5, chlorination lower than 2 mg/L (or no chlorination but filtration), perhaps 0.2 mg/L as in Germany, influenza viruses embedded in particles, and required virus inactivation/filtration performance from six to four orders of magnitude.

 

In Germany, drinking water is often only roughly filtered or not at all. Thus, very small viruses are not filtered out reliably. In the treatment of groundwater, the widespread filtration plants for the elimination of iron and manganese are ineffective in eliminating viruses32. The goals demanded by the WHO regarding elimination and inactivation of viruses cannot be met32, even in Germany, with its efficient plants for flocculation and filtration, and the common disinfection procedures followed (chlorine, ozone treatment, and UV irradiation), whose efficiency declines with decreasing water temperature (chlorine and ozone treatment), because microorganisms clumped in water are only reduced to a limited extent.

 

 

"Cooling chain of the public water supply"

Coldness is the most important parameter for the preservation of virulent influenza viruses in water33-38. The minimum temperature of water in German reservoirs is 3–5°C in the months of January and February. River water also reaches its minimum temperature in those months. Also, groundwater taken from deeper wells can be colder if there is insufficient sealing between the well pipes and the surrounding rocks. This allows the infiltration of surface water to influence the temperature of the groundwater, which may make it colder than the deeper groundwater. Moreover, surface water trickling from streams and arriving at the wells within short distances can have the same effect. River bank filtrate pumped from wells that are drilled near the bank takes on the temperature of the cold river water, and the same applies to wells from which groundwater enriched with surface water is pumped. The 1-m deep soil temperatures correspond to the temperatures of the underground, frost-protected, drinking water pipelines. In Germany, the minimum soil temperatures at a depth of 1 m are 3–5°C during February and March39. The temperature inside the drinking water pipelines and that of the drinking water transported in them adapts to the soil temperature. In winter, cold, untreated water arrives at the drinking-water treatment plants, and remains cold in the water tanks and pipelines after treatment, up to the houses of consumers. In particular, the minimum temperature of tap water corresponds to the cold winter temperature in the soil and water pipelines, and rises in FebruaryMarch. Only at domestic taps is the cold drinking water mixed with warm water from the house. This process is the “cooling chain of the public water supply”, from the water source to the consumers, with a drinking water temperature of, for instance, 3–5°C in February–March. Cold, fresh drinking water taken from surface water, insufficiently protected groundwater near the surface, as well as groundwater from rocks contaminated by influenza viruses, may be the abiotic vehicle that transports the virulent influenza viruses in winter at temperatures of 3–5°C. The viruses are conserved effectively in the cold and transported to humans via the cooling chain of the public water supply.

 

 

Transmission paths of drinking water - basic principle

Infections through drinking water are not only transmitted through drinking the water, but also through the inhalation of aerosols during showers and contact with drinking water. The entry sites in humans are the conjunctiva, nasal and oral mucous membranes, eardrums, wounds, and contaminated catheters infecting other mucous membranes.

 

 

Influenza transmission in temperate climates and tropical regions

In temperate regions, influenza epidemics recur with marked seasonality around the end of winter, in the northern as well as the southern hemisphere. Although seasonality is one of the most familiar features of influenza, it is also one of the least understood. Indoor crowding during cold weather, seasonal fluctuations in host immune responses, and environmental factors, including relative humidity, temperature and UV radiation, have all been assumed to account for this phenomenon, but none of these has been tested directly. Influenza also causes significant morbidity in tropical regions; however, in contrast to the situation in temperate zones, influenza in the tropics is not strongly associated with a certain season.

 

In the tropics, clear links are observed between the cold rainy seasons, floods and the spread of influenza. There is a widespread link between avian influenza and water, e.g. in Egypt, with respect to the Nile delta, or in Indonesia, with respect to the less prosperous residential districts with backyard flocks of birds, and without a central water supply, as in Vietnam40. However, the direct biotic transmission from birds, poultry or humans to humans cannot be dependent on the cold rainy seasons or floods. Water is a very efficient abiotic vehicle for the spread of viruses – in particular, the fecal viruses, as well as those excreted through the mouth, nose and eyes. Infected humans, mammals, birds and poultry can contaminate drinking water everywhere, and all humans require water frequently and have very intensive contact with water in general, and not only through drinking.

 

The virulence of influenza viruses depends on the temperature and time. Especially in cases of local water supplies freshly contaminated with influenza virus from wells near the surface, cisterns, tanks, rain barrels, ponds, rivers, or rice paddies, this pathway can explain the small clusters in households. For example, at 24°C in the tropics, the virulence of influenza viruses in water persists only for 2 days. However, in temperate climates with central water supplies, the temperature of the “older”, less fresh contaminated water is decisive for virus virulence. At 7°C, the influenza virus virulence in water extends to 14 days.

 

Ducks and rice paddies may be critical factors in spreading avian influenza41. Ducks, rice paddies and people, but not chickens, have emerged as the most significant factors in the spread of avian influenza in Thailand and Vietnam42. Also, these factors are presumed to be behind the persistent outbreaks in other countries, such as Cambodia and Laos. In Thailand, for instance, the proportion of young ducks in flocks was found to peak in September–October; these rapidly growing young ducks can thus benefit from the peak of the rice harvest in November–December, at the beginning of the cold weather. Thailand, Vietnam, Cambodia and Laos, as opposed to Indonesia, are located in the northern hemisphere. This peak in the congregation of ducks in NovemberDecember indicates the period in which there is an increase in the chances of virus release and exposure, where rice paddies often become a temporary habitat for wild-bird species. The influenza season in humans begins close to this peak.

 

 

Conclusions

In temperate climates, the strict dependence of influenza infection on environmental temperature makes it improbable that the primary human-to-human transmission of influenza is through warm biotic droplet infection. Influenza must be triggered by an abiotic vehicle that is increasingly efficient in spreading infection with increasing cold environmental temperatures. Therefore, the question arises as to which abiotic vehicles are dependent on cold environmental temperatures for the transmission of influenza viruses. Drinking water is such an abiotic vehicle.

 

This article shows that cold drinking water may be the abiotic vehicle by which virulent human influenza viruses from the infection reservoirs reach humans, and which is responsible predominantly for triggering the seasonal influenza epidemics. This also applies specifically to the new H1N1 influenza virus with vomiting or/and diarrhoea (38% of cases) and the lethal H5N1 avian influenza virus, whose potential transmission via water is well established.

 

 

References

Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infect Dis. 2007 Apr;7(4):257-65. Available from http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=17376383&ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum visited: 9 June 2008.

Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3(10): e151. doi:10.1371/journal.ppat.0030151. Available from http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.0030151 visited: 9 June 2008.

Lowen AC, Steel J, Mubareka S, Palese P. High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. Journal of Virology, June 2008, p. 5650-5652, Vol. 82, No. 11. Available from http://jvi.asm.org/cgi/content/abstract/82/11/5650 visited: 9 June 2008.

Shaman J, Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality. PNAS 2009 106:3243-48.

Lipsitch M, Viboud C. Influenza seasonality: Lifting the fog. PNAS 2009 106:3645-46.

Robert Koch-Institut (RKI). Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2007, Datenstand: 1. März 2008.

Arbeitsgemeinschaft Influenza. Available from http://influenza.rki.de/agi visited: 9 June 2008.

Robert Koch-Institut (RKI). Datenbank der nach Infektionsschutzgesetz meldepflichtigen Infektionskrankheiten in Deutschland. Available from http://www3.rki.de/SurvStat/ visited: 9 June 2008.

Goldmann DA. Transmission of viral respiratory infections in the home. Paediatr Infect Dis J 2000;19:97-102. Available from http://www.ncbi.nlm.nih.gov/pubmed/11052396 visited: 9 June 2008.

International Scientific Forum on Home Hygiene IFH. Colds, flu and other respiratory infections. May 2003. Available from http://www.ifh-homehygiene.org/2003/2downloadabledoc/SARS.pdf visited: 9 June 2008.

Goldmann DA. Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions, Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA, Emerging Infectious Diseases, Special Issue. Available from http://www.cdc.gov/ncidod/eid/vol7no2/goldmann.htm visited: 9 June 2008.

D'Alessio DJ, Meschievitz CK, Peterson JA, Dick CR, Dick EC. Short-duration exposure and the transmission of rhinoviral colds. J Infect Dis 1984;150:189-194.

Webster RG. Influenza: An emerging disease. Emerging Infectious Diseases 4(3) July-September 1998, Special Issue. Available from http://www.cdc.gov/ncidod/eid/vol4no3/webster.htm visited: 9 June 2008.

Hinshaw VS, Webster RG. The natural history of influenza A viruses. In: Beare AS, editor. Basic and applied influenza research. Boca Raton (FL): CRC Press; 1982. p. 79-104.

Khalenkov A, Laver WG, Webster RG. Detection and isolation of H5N1 influenza virus from large volumes of natural water. J Virol Methods, Volume 149, Issue 1, April 2008, Pages 180-183. Available from http://www.ncbi.nlm.nih.gov/pubmed/18325605 visited: 9 June 2008.

Gürtler L. Virology of Human Influenza. Influenza Report 2006, Edited by Kamps BS, Hoffmann C, Preiser W. Flying Publisher. Available from www.InfluenzaReport.com visited: 9 June 2008.

Nicholson KG, Webster RG, Hay AJ. Textbook of Influenza. Blackwell Science, Oxford, 1998.

Lamb RA, Krug RM. Orthomyxoviridae: The viruses and their replication. In: Fields Virology fourth edition, Knipe DM, Howley PM eds, Lippincott, Philadelphia 2001, pp 1487-1531.

Wright PF, Webster RG. Orthomyxoviruses. In: Fields Virology fourth edition, Knipe DM, Howley PM eds, Lippincott, Philadelphia 2001, pp 1533-1579.

Brown IH. Part 1: Swine, avian & human influenza viruses, OIE/FAO/EU International Reference Laboratory for Avian Influenza, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey KT15, 3NB, UK. Available from http://www.pighealth.com/influenza.htm visited: 9 June 2008.

Brown IH. Part 2: Transmission between pigs and other species, OIE/FAO/EU International Reference Laboratory for Avian Influenza, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey KT15, 3NB, UK. Available from http://www.pighealth.com/influenzaB.htm visited: 9 June 2008.

Graves IL, Oppenheimer JR. Human viruses in animals in West Bengal: An ecological analysis, Human Ecology, Volume 3, Number 2 / April, 1975, 105-130. Available from http://www.springerlink.com/content/u5408wx5t622ll82/ visited: 9 June 2008.

Kaden V, Müller T. Gefährliche Verwandtschaft Schwarzwild - ein natürliches Reservoir für Infektionserreger und Ansteckungsquelle für Hausschweine? Bundesforschungsanstalt für Viruskrankheiten der Tiere Forschungsreport 1/2001: 24-28. Available from http://ticker-grosstiere.animal-health-online.de/20010902-00002/ visited: 9 June 2008.

Kawaoka Y, Bordwell E, Webster RG. Intestinal replication of influenza A viruses in two mammalian species, Archives of Virology, Volume 93, Numbers 3-4/December, 1987, 303-308. Available from http://www.springerlink.com/content/g352726672xj5703/ visited: 9 June 2008.

Markowska-Daniel I, Pejsak Z. Seroprevalence of influenza virus among wild boars in Poland. National Veterinary Research Institute, Swine Diseases Departement, Pulawy, Poland. Available from http://www.medwet.lublin.pl/Year%201999/vol99-05/art222-98.htm visited: 9 June 2008.

Robert Koch-Institut (RKI). Merkblatt für Ärzte, Influenza – Verhütung und Bekämpfung (Stand 1999).

Vicente J, León-Vizcaíno L, Gortázar C, José Cubero M, González M, Martín-Atance P. Antibodies to selected viral and bacterial pathogens in European wild boars from southcentral Spain. J Wildl Dis. 38(3): 649-52. Available from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12238391&dopt=Abstract visited: 9 June 2008.

Zhou N, He S, Zhang T, Zou W, Shu L, Sharp GB, Webster RG. Influenza infection in humans and pigs in southeastern China. Archives of Virology, Volume 141, Numbers 3-4/March, 1996, 649-661. Available from http://www.springerlink.com/content/p220471r1r337521/ visited: 9 June 2008.

Landolt GA, Karasin AI, Phillips L, Olsen CW. Comparison of the pathogenesis of two genetically different H3N2 influenza A viruses in pigs. J Clin Microbiol. 2003 May; 41(5): 1936–1941. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&rendertype=abstract&artid=154671 visited: 9 June 2008.

Zimmermann W. Krankheiten des Schweines. Universität Bern, Departement klinische Veterinärmedizin, Schweineklinik, Vorlesungsskript WS 2001-2002, 49-51.

Rice EW, Adcock NJ, Sivaganesan M, Brown JD, Stallknecht DE, Swayne DE. Chlorine inactivation of highly pathogenic avian influenza (H5N1) virus. Emerg Infect Dis [serial on the Internet]. 2007 Oct [date cited]. Available from http://www.cdc.gov/EID/content/13/10/1568.htm visited: 9 June 2008.

World Health Organization (WHO). Guidelines for drinking-water quality, third edition, incorporating first addendum. Available from http://www.who.int/water_sanitation_health/dwq/gdwq3/en/print.html visited: 9 June 2008.

Halvorson DA, Kelleher CJ, Senne DA. Epizootiology of Avian Influenza: Effect of Season on Incidence in Sentinel Ducks and Domestic Turkeys in Minnesota. Appl Environ Microbiol. 1985 April; 49(4): 914-919. Available from http://aem.asm.org/cgi/content/abstract/49/4/914 visited: 9 June 2008.

Stallknecht DE, Shane SM, Kearney MT, Zwank PJ. Persistence of avian influenza viruses in water. Avian Dis. 1990 Apr-Jun;34(2):406-11. Available from http://www.ncbi.nlm.nih.gov/pubmed/2142420?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_Discovery_RA&linkpos=3&log$=relatedarticles&logdbfrom=pubmed visited: 9 June 2008.

Stallknecht DE, Kearney MT, Shane SM, Zwank PJ. Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis. 1990 Apr-Jun;34(2):412-8. Available from http://www.ncbi.nlm.nih.gov/pubmed/2142421?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_Discovery_RA&linkpos=5&log$=relatedarticles&logdbfrom=pubmed visited: 9 June 2008.

World Health Organization. Avian influenza H5N1 infection in humans: urgent need to eliminate the animal reservoir - update 5, 22 January 2004. Available from http://www.who.int/csr/don/2004_01_22/en/ visited: 9 June 2008.

World Health Organization. Avian influenza A(H5N1)- update 31: Situation (poultry) in Asia: need for a long-term response, comparison with previous outbreaks, 2 March 2004. Available from http://www.who.int/csr/don/2004_03_02/en/ visited: 9 June 2008.

Brown JD, Swayne DE, Cooper RJ, Bums RE, Stallknecht DE. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 2007;51(Suppl):285-9. Available from http://www.ncbi.nlm.nih.gov/pubmed/17494568 visited: 9 June 2008.

Deutscher Wetterdienst (DWD). Wetterstation Erfurt-Bindersleben, Erdbodentemperaturen aus 100 cm Tiefe, mittlere Lufttemperatur; Wetterstation Fichtelberg, mittlere Lufttemperatur.

Dinh PN, Long HT, Tien NTK, Hien NT, Mai LTQ, Phong LH, et al. Risk factors for human infection with avian influenza A H5N1, Vietnam, 2004. Emerg Infect Dis [serial on the Internet]. 2006 Dec. Available from http://www.cdc.gov/ncidod/EID/vol12no12/06-0829.htm visited: 9 June 2008.

United Nations agency. Ducks and rice major factors in bird flu outbreaks, says UN agency, 26 March 2008. Available from http://www.un.org/apps/news/story.asp?NewsID=26096&Cr=&Cr1 visited: 9 June 2008.

Gilbert M, Xiao X, Pfeiffer DU, Epprecht M, Boles S, Czarnecki C, Chaitaweesub P, Kalpravidh W, Minh PQ, Otte MJ, Martin V, Slingenbergh J. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4769-74. Epub 2008 Mar 24. Available from http://www.ncbi.nlm.nih.gov/pubmed/18362346 visited: 9 June 2008.

 

 

Dipl.-Ing. Wilfried Soddemann

Mühlenstraße 5b

D - 48351 Everswinkel

soddemann-aachen@t-online.de

http://sites.google.com/site/trinkwasservirenalarm/Trinkwasser-Viren?pageUrlChanged=Trinkwasser-Viren

Kommentar hinzufügen
Schreiben Sie jetzt einen Kommentar zu diesem Artikel
Der Inhalt dieses Feldes wird nicht öffentlich zugänglich angezeigt.
  • Internet- und E-Mail-Adressen werden automatisch umgewandelt.
  • Erlaubte HTML-Tags: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd><b><br><p><span><div>
  • Zeilen und Absätze werden automatisch erzeugt.

Weitere Informationen über Formatierungsoptionen

Diesen Artikel weiterempfehlen
Danke, dass Sie diese Seite weitergeleitet haben.
CAPTCHA
Diese Abfrage verhindert den automatisierten Missbrauch dieses Mailformulars
1 + 1 =
Lösen Sie diese simple Rechenaufgabe und tragen das Ergebnis ein.